references

An Independent Biosecurity Risk Assessment V.1.1 - J Weissman

1. COVID-19 Vaccines Yellow Card Analysis. UK Freedom Project. Accessed November 27, 2021. https://ukfreedomproject.org/covid-19-vaccines-yellow-card-analysis/

2. Summary of the Public Assessment Report for COVID-19 Vaccine Pfizer/BioNTech. MHRA. Accessed November 27, 2021. https://www.gov.uk/government/publications/regulatory-approval-of-pfizer-biontech-vaccine-for-covid-19/summary-public-assessment-report-for-pfizerbiontech-covid-19-vaccine

3. Maugeri M, Nawaz M, Papadimitriou A, et al. Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells. Nat. Commun. 2019;10(1). doi:10.1038/s41467-019-12275-6

4. Cui S, Wang Y, Gong Y, et al. Correlation of the cytotoxic effects of cationic lipids with their headgroups. Toxicol. Res. 2018;7(3):473-479. doi:10.1039/c8tx00005k

5. Ehlinger C, Spear N, Doddareddy R, Shankar G, Schantz A. A generic method for the detection of polyethylene glycol specific IgG and IgM antibodies in human serum. J. Immunol. Methods. 2019;474. doi:10.1016/j.jim.2019.112669

6. Pardi N, Tuyishime S, Muramatsu H, et al. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. JCR. 2015;217:345-351. doi:10.1016/j.jconrel.2015.08.007

7. SARS-CoV-2 MRNA Vaccine (BNT162, PF-07302048) 2.6.4 薬物動態試験の概要文. Pfizer Inc. Accessed August 29, 2021. https://www.pmda.go.jp/drugs/2021/P20210212001/672212000_30300AMX00231_I100_1.pdf

8. Ogata AF, Cheng C-A, Desjardins M, et al. Circulating Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Vaccine Antigen Detected in the Plasma of mRNA-1273 Vaccine Recipients. Clin. Infect. Dis. Published online May 20, 2021. doi:10.1093/cid/ciab465

9. Bansal S, Perincheri S, Fleming T, et al. Cutting Edge: Circulating Exosomes with COVID Spike Protein Are Induced by BNT162b2 (Pfizer-BioNTech) Vaccination prior to Development of Antibodies: A Novel Mechanism for Immune Activation by mRNA Vaccines. J Immunol. 2021;207(10):2405-2410. doi:10.4049/jimmunol.2100637

10. Lei Y, Zhang J, Schiavon CR, et al. SARS-CoV-2 Spike Protein Impairs Endothelial Function via Downregulation of ACE 2. Circ. Res. Published online 2021:1323-1326. doi:10.1161/CIRCRESAHA.121.318902

11. Raghavan S, Kenchappa DB, Leo MD. SARS-CoV-2 Spike Protein Induces Degradation of Junctional Proteins That Maintain Endothelial Barrier Integrity. Front. Cardiovasc. Med. 2021;8. doi:10.3389/fcvm.2021.687783

12. Zhang S, Liu Y, Wang X, et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J. Hematol. Oncol. 2020;13(1). doi:10.1186/s13045-020-00954-7

13. Zhang L, Zhou L, Bao L, et al. SARS-CoV-2 crosses the blood-brain barrier accompanied with basement membrane disruption without tight junctions alteration. Signal Transduct. Target. Ther. 2021;6(1):337. doi:10.1038/s41392-021-00719-9

14. Crowley SD, Gurley SB, Herrera MJ, et al. Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc. Natl. Acad. Sci. U.S.A.. 2006;103(47):17985-17990. doi:10.1073/pnas.0605545103

15. Young CN, Davisson RL. Angiotensin-II, the brain, and hypertension: An update. Hypertension. 2015;66(5):920-926. doi:10.1161/HYPERTENSIONAHA.115.03624 57.

16. Suzuki YJ, Gychka SG.SARS-CoV-2 Spike Protein Elicits Cell Signaling in Human Host Cells: Implications for Possible Consequences of COVID-19 Vaccines. Vaccines. 2021;9(1):1-8. doi:10.3390/vaccines9010036

17. Silvagno F, Vernone A, Pescarmona GP. The role of glutathione in protecting against the severe inflammatory response triggered by covid-19. Antioxidants. 2020;9(7):1-16. doi:10.3390/antiox9070624

18. Singh N, Bharara Singh A. S2 subunit of SARS-nCoV-2 interacts with tumor suppressor protein p53 and BRCA: an in silico study. Transl. Oncol. 2020;13(10):100814. doi:10.1016/j.tranon.2020.100814

19. Jiang H, Mei YF. SARS-CoV-2 Spike Impairs DNA Damage Repair and Inhibits V(D)J Recombination In Vitro. Viruses. 2021;13(10):2056. Published 2021 Oct 13. doi:10.3390/v13102056

20. Konstantin Föhse F, Geckin B, Overheul GJ, et al. The BNT162b2 mRNA vaccine against SARS-CoV-2 reprograms both adaptive and innate immune responses. medRxiv: the preprint server for health sciences. Published online May 6, 2021. doi:10.1101/2021.05.03.21256520

21. COVID-19 vaccine surveillance report: Week 42. UK Health Security Agency. Accessed November 27, 2021. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1027511/Vaccine-surveillance-report-week-42.pdf

22. Smits VAJ, Hernández-Carralero E, Paz-Cabrera MC, et al. The Nucleocapsid protein triggers the main humoral immune response in COVID-19 patients. Biochem. Biophys. Res. Commun. 2021;543:45-49. doi:10.1016/j.bbrc.2021.01.073

23. le Bert N, Tan AT, Kunasegaran K, et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature. 2020;584(7821):457-462. doi:10.1038/s41586-020-2550-z

24. van Vinh Chau N, My Ngoc N, Anh Nguyet L, et al. An observational study of breakthrough SARS-CoV-2 Delta variant infections among vaccinated healthcare workers in Vietnam. EClinicalMedicine. 2021;41(101143). doi:10.1016/j.eclinm.2021.101143

25. Area FB, Servellita CV, Morris M-K, et al. Predominance of antibody-resistant SARS-CoV-2 variants in vaccine breakthrough cases from the San Francisco Bay Area, California. medRxiv: the preprint server for health sciences. Published online August 25, 2021. doi:10.1101/2021.08.19.21262139

26. Arora, P, Rocha, C, Kempf, A, et al. The spike protein of SARS-CoV-2 variant A.30 is heavily mutated and evades vaccine-induced antibodies with high efficiency. Cell. Mol. Immunol. 2021.18:2673-2675. doi:10.1038/s41423-021-00779-5

27. Martin DP, Weaver S, Tegally H, et al. The emergence and ongoing convergent evolution of the N501Y lineages coincides with a major global shift in the SARS-CoV-2 selective landscape. medRxiv: the preprint server for health sciences. Published online March 5, 2021. doi:10.1101/2021.02.23.21252268

28. Long term evolution of SARS-CoV-2, 26 July 2021. Scientific Advisory Group for Emergencies. Accessed November 27, 2021. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1007566/S1335_Long_term_evolution_of_SARS-CoV-2.pdf

29. Brown EL, Essigmann HT, Anderson M, et al. Original Antigenic Sin: the Downside of Immunological Memory and Implications for COVID-19 HCoV-NL63 and HCoV-HKU1). E. ASM. 2021;6(2):1-6. doi:10.1128/mSphere.00056-21

30. Francis, T. On the Doctrine of Original Antigenic Sin. Proc. Am. Philos. Soc. 1960;104(6):572-78. https://www.jstor.org/stable/985534

31. Vaccines and Related Biological Products Advisory Committee Meeting, Wednesday, May 16, 2001. FDA Center for Biologics Evaluation and Research. Accessed November 27, 2021. https://wayback.archive-it.org/7993/20170404095417/https:/www.fda.gov/ohrms/dockets/ac/01/transcripts/3750t1_01.pdf

32. Guidance on Getting the COVID-19 Vaccine. Children of God For Life. Accessed November 27, 2021. https://cogforlife.org/guidance/

33. PER C6 & HEK-293. Children of God For Life. Accessed November 27, 2021. https://cogforlife.org/per-c6-hek-293/

34. Brown RB. Outcome Reporting Bias in COVID-19 mRNA Vaccine Clinical Trials. Medicina (Lithuania). 2021;57(3):1-9. doi:10.3390/medicina57030199

35. Vaccines and Related Biological Products Advisory Committee Meeting, December 10, 2020: FDA Briefing Document, Pfizer-BioNTech COVID-19 Vaccine. FDA. Accessed November 27, 2021. https://www.fda.gov/media/144245/

36. BMJ Investigation. Covid-19: Researcher blows the whistle on data integrity issues in Pfizer’s vaccine trial. BMJ. 2021:375:1-3. doi:10.1136/bmj.n2635

37. Naik, R (Review Committee Chair, DVRPA/OVRR). Summary Basis for Regulatory Action (COMIRNATY). FDA. Accessed November 27, 2021. https://www.fda.gov/media/151733/download

38. BioNTech SE. Pfizer-BioNTech Announce Positive Topline Results of Pivotal COVID-19 Vaccine Study in Adolescents. Pfizer Inc. Published March 31, 2021. Accessed September 6, 2021. https://www.pfizer.com/news/press-release/press-release-detail/pfizer-biontech-announce-positive-topline-results-pivotal

39. Frenck RW, Klein NP, Kitchin N, et al. Safety, Immunogenicity, and Efficacy of the BNT162b2 Covid-19 Vaccine in Adolescents. N. Engl. J. Med. 2021;385(3):239-250. doi:10.1056/nejmoa2107456

40. #SilencedVoices: Vaccine-damaged Americans Tearfully Describe SEVERE Side Effects After Taking Covid Vaccine On Sen. Ron Johnson’s ‘Give an Ear’ Panel. NewsRescue. Published June 30, 2021. Accessed September 6, 2021. https://newsrescue.com/silencedvoices-vaccine-damaged-americans-tearfully-describe-severe-side-effects-after-taking-covid-vaccine-on-sen-ron-j ohnsons-give-an-ear-panel/

41. BNT162b2, 3.2.P.1: Description and Composition of the Drug Product. Pfizer. Accessed November 27, 2021. https://www.whatdotheyknow.com/request/801347/response/1912708/attach/3/description%20and%20composition%20redacted.pdf

42. Exact quantity of Water for Injection pre and post dilution in BTN162b2. WhatDoTheyKnow. Accessed November 27, 2021. https://www.whatdotheyknow.com/request/exact_quantity_of_water_for_inje?unfold=1#incoming-1920922

43. Bunyavanich S, Do A, Vicencio A. Nasal Gene Expression of Angiotensin-Converting Enzyme 2 in Children and Adults. JAMA. 2020;323(23):2427–2429. doi:10.1001/jama.2020.8707

44. Loske J, Röhmel J, Lukassen S, et al. Pre-activated antiviral innate immunity in the upper airways controls early SARS-CoV-2 infection in children. Nat. Biotechnol. Published online 2021. doi:10.1038/s41587-021-01037-9

45. Saule P, Trauet J, Dutriez V, Lekeux V, Dessaint JP, Labalette M. Accumulation of memory T cells from childhood to old age: central and effector memory cells in CD4(+) versus effector memory and terminally differentiated memory cells in CD8(+) compartment. Mech Ageing Dev. 2006;127(3):274-281. doi:10.1016/j.mad.2005.11.001